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ON THE CONTINUQUS GOLD-MINING EQUATION

Richard Bellman and Sherman Lehman
The RAND Corporation and Stanford University

91. Introduction.

In some previous communications, [1] and [2], we have des—
cribed some results obtained in the investigation of a dynamic
programming problem, the "gold—mining" problem, which led to the
functional equation

N

A: ;E; pi(rix + f«l—ri)x,y)

f(x,y) = Max ; i XG0 (1.1)

B: 2;; q (8457 + £(x,(1-e,)y)

where Pyr Q4 2 o, Z Py>» Z qq € 1. The solution of this

equation was given, inter alia, in [1] and shown to have a rela—
tively simple form. In addition, a partial solution of a more com—
plicated equation, corresponding to a nonlinear utility function,
was given in [2], having the same form. It is known, however, as

a result of an unpublished counter-example due to H. N. Shapiro and
S. Karlin, that the solution of more general equations such as

Pi(rix + £((1-ry)x,y)

A:
f(x,y) = Max | B: qi(ray + f(x,(1-rz)y) (1.2)
C: pa(rax + rey + £((1-re)x, (1-r4)y)

O {ry,rg,rs,rq <1, 0 < P1,q1,P2 < 1 cannot have the same simple
form for all values of the parameters.

In an effort to gain some insight into the structure of par-
ticular classes of solutions of (1.2), and similar equations of more
complicated type, we have been led to consider some continuous
analogues of these equations. There are many different procedures
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for obtaining these continuous analogues. One which we have fol-
lowed to begin with leads to problems in the calculus of variations.

An essential feature of our research lies in viewing a policy
in its extensive rather than normal form, to borrow the termi-
nology of game theory. Another way of stating this 1is that instead
of determining the complete solution for one set of initial para-—
meters, which would correspond to determining the extremal curve
in the classical theory of the calculus of variations, we attack
our problem by imbedding it into the family of problems of this
type with arbitrary initial parameters. This is the approach used
throughout the theory of dynamic programming, cf. [1], [2], {3],
(4], [5]. Having done this we determine an optimal continuation
from each position, which upon being carried through yields an
optimal policy.

This approach, which may be considered a variant in prob-
lems of deterministic type, is in many ways a necessity in prob-—
lems of stochastic type. It is possible to treat many of the clas-—
sical problems in the calculus of variations by means of this
technique. We shall return to this point at some future time.

Guided by our knowledge of tr= solution in the discrete cases,
and using the behavioristic approach described above, we have been
able to solve completely and explicitly a variety of problems which
are intractable in the original discrete form.

In the following sections we shall discuss the simplest
counterpart of (1.2) in continuous form, and list a number of typi-
cal results we have obtained. Following this we eshall sketch
briefly a formulation of the more general continuous version which
results from processes corresponding to (1.1) and which requires
more powerful techniques.

A more complete discussion and proofs of the results contained
herein will appear elsewhere. Further results concerning more
general problems discussed in [3] will be presented subsequently.




P-436

%2. Formulation.

In the formulation of problems involving the use of continu—
ous policies we are immediately faced with the difficulty of
defining what we mean by a continuous mixed strategy, and of con-—
structing the appropriate mathematical theory with which to handle
this therny concept. To circumvent these conceptual and mathe—
matical difficulties, we shall utilize an idea emphasized in Eﬂ,
which—briefly put—is that for mathematical purposes, mixing at
a point 1s to an arbitrary cegree of approximation equivalent to
mixing pure strategies in an interval about the point.

Let us then consider a process where we are given two initial
quantities, x and y, the gold mines of [2]; and two operations,
A and B, mining operations. If A 1s used over a time interval 6,
there is a probability 1 — q;6 + o(6) that r;x6 + o(8) ts obtained
and that the process is allowed to continue, with the new initial
amounts x - r;x6 + o(%),y; and a probability q;6 + o(6) that
nothing is obtained and the process terminates. In a like manner,
if B 1s used, there 18 a probability 1 — qab + o(5) that rayb + o(5)
is obtained and the process continues; and a probability q26 + o(5)
that the process terminates.

To introduce the concept of mixing, we consider f.rst the case
in which the time interval is divided into intervals of length A,
where A is small. In a typical interval [t,t+4], t = kA, the first
part of the interval, [t,t+¢,4], will be devoted to the use of A;
while the second part, [t+4,4,t+A], will be devoted to the use
of B. In the limit, as A—3 0, we obtain the effect of mixing A
and B at t in the ratio ¢,:(1—¢,), cf. [6] for further discussion.

A strategy consists of a choice of ¢, for each of the points
koo We wish to determine the strategy which will maximize the
expected value of the amount obtained before the process terminates.
For any given strategy let
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x(t) = quantity of gold remaining in first mine provided
that the process has continued until t,
y(t) = quantity of gold remaining in second mine provided
that the process has continued until t, ( )
2.1
p(t) = probability that the process continues at least
to ¢,
f(t) = expected amount obtained up to t.

writing down the equations expressing x(t+4), y(t+4), p(t+4),
f(t+4) in terms of the values at t, and letting A—> O, we are led
to the following system of differential equations:

dx

= - b (t)rix(t), x(0) = x,,
2L = - be(t)ray(t), y(o) = ¥,
(2.2)
%E— = —p(t)[ ba(t)as + $2(t)az ], p(o) = 1,
SL e p(t)Cha(t)rix(t) + ba(t)ray(t) ], f(o0) = O,

where 0 < é; <1, ¢é2 =1 — ¢;. The problem is now to determine

b1 (t) so as to maximize f(o ). Itis not difficult to give a proof
based upon, say, weak convergence, which will assure us that the
maximum is actually attained. As W. Fleming has kindly informed

us, the existence of a maximum is guaranteed by a general theorem in
the calculus of variations.

Since the equations are fortunately nonlinear, variational
techniques are particularly applicable. We find

Theorem 1. The maximum value of f(oco) is attained by the policy

() If qerix > quray, 61 =1,
(b) If qiray > Qerix, ¢2 =1, (2.3)
(¢) If qarix = qiray, ¢1 = rg/(ri+ra), ¢2 = ri/(ri+ra).
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Note that the boundary line is, as might be expected, the
set of points vhere expected gain over expected cost is the same
for both choices, A and B.

Theorem 2. If T 1s finite, the optimal policy has one of the
followiqgraix forms:

(a) A always, (d) A, then M, then A,
(b) B always, (e) B, then M, then A&, (2.%)

(¢c) M followed by A (f) B followed by A.
This 18 for q; < qe; & similar result holds for @2 < q -

The precise intervals within which each 1s used may be determined
explicitly. Here M represents the choice given tn (2 3¢).

The optimal strategy represents a compromise between the long-—

term policy given in Theorem 1 and the short—term policy of maxi-—
mizing expected gain.

The 3—choice problem corresponding to (1.2) has the continuous

analogue:
= - Cha(t)rs + ds(t)rsTx(t),
_g{_ = — [éa(t)ra + ds(t)ry Jy(t), (2.5)
= - p(t) [ér(t)a + dalt)as + ¢s(t)as ],

Tt = POT (b1 (6)r1 + bs(6)ra)x(t) + (ba(t)re + bs(t)ra)y ()],
f(o) = 0,

where O < ¢;,92,0s < 1, ¢1+bo+ds = 1.

The maximum value of f(oo) is provided in the general case by
the policy represented schematically by
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¥ L
b2=1 $s=1 L,
(2.6)
$y=1
0 x

Depending upon the values of the parameters, one line 1is an
absorbing barrier, which is to say, for (x,y) on the line a mixed
policy 1s pursued which keeps the point on the line. This line
has as 1ts equation the equality of expected gain over expected
cost. The other line will be a translucent barrier, causing only
a change from ¢1 =1 to ¢J = 1, and is not defined by an equality
of the above type. In special cases the middle region disappears
and Ly coincides with Lpz. The solution is now that for the two—
choice case.

This last result is quite surprising and explains some of the
difficulties of the discrete problem. One boundary, the absorbing
barrier, is determined by a local condition, whereas the other is
determined by a global condition.

Theorem 3. 1If, in the two—cholice problem described by (22), in place
of expected return, we seek to maximize the expected value of some
function ¢ of the total return where ¢ is any strictly increasing
function, the solution is that given by (2.3).

To obtain this result we consider
00

6= = I blx, + 3o - x(6) — y(8))ap(e), (2.7)

the quantities being defined as in (2).

The proofs of the above results are long and detailed, depend—
ing upon a precise analysis of the properties of an optimal policy.

©3. More General Processes.

Let us now consider the more general process corresponding to
(1.1). Here the use of A leads to a variety of possible gains, and
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similarly for B. The gquantities x(t) and y(t), as defined by
(2.1) are now stochastic quantities. This means that it 1s no
longer possible to obtain the equations of (2.2). Instead we must
introduce the function F(u,v,t) defined by the property that

Pr {u <x(t) Su+du, v<y(t)<v+ dv} = F(u,v,t)dudv. (3.1)

We may now, in a way similar to that followed in o2, derive a par-
tiel differential equation for F of the form

.%%— = P(u,v) %%g— + Q(u,v) —gg— . (3.2)

The system of ordinary differential equations

- p(uv), - = Qu,v) (3.3)

connected with (3.2) will have a form similar to the first two equa-—
tions in (2.2).

The differential equations we have used to define our continu-—
ous processes bear the same relation to the rigorous integral equa-
tions defined by the original processes as the heat equations bears
to the Chapman-Kolmogoroff equations.

Finally, let us note that the above formalism is also appli-
cable to two-—person multi-stage games of continuous type, and, in
particular, to pursuit games. :

These extensions will be discussed in subsequent comrmunications.
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